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Abstract
We study the dynamics of a nematic liquid crystal in a shear flow by employing
the gradient of the Landau–de Gennes free-energy function on second-rank
tensors, modified by constant and rotational terms. We predict configurations
of equilibria and periodic solutions found in numerical simulations and explain
certain anomalous nongeneric continua of equilibria. The existence of these
continua shows that the model is structurally unstable.

PACS numbers: 0240, 4720, 6130

1. Introduction

In this paper we derive some mathematically rigorous results using geometric techniques
concerning a Landau–de Gennes model of a liquid crystal in a uniform shear flow and prompted
by a detailed study carried out by Vicente Alonso [20].

Olmsted and Goldbart [14] investigated a Landau–de Gennes model for this situation.
Subsequently Vicente Alonso [20] conducted a more thorough investigation and extended the
work of Olmsted and Goldbart by using a combination of analytical and numerical techniques
based on bifurcation theory. She has been able to elucidate systematically the complicated
solution structure of this problem in both two and three dimensions, identify time-dependent
tumbling and wagging modes and discover a Takens–Bogdanov bifurcation point associated
with this dynamical behaviour.

This problem has also been considered by other researchers using different physical
models. Larson [10] employed a Doi model [2] and demonstrated that the system exhibits
a complex variety of behaviour including tumbling and wagging. Subsequently Maffettone
and co-workers [5,11,12] examined the Doi model using techniques of numerical bifurcation
theory to reveal systematically the underlying solution structure. Numerical bifurcation theory
has also been employed by Rey and co-workers [6,7,16,18,19] on a hybrid model that marries
to the Doi model or the Leslie–Ericksen theory in different limits.

The degree of coherence of alignments of molecules in a nematic liquid crystal is often
represented by a field of symmetric 3 × 3 tensors Q(x), x ∈ R3 with tr(Q) = 0 (the tensor
order parameter or Saupe ordering matrix) [17]. In a spatially uniform system the matrix Q is
independent of x ∈ R3. When Q = 0 the system is said to be isotropic, with the molecules not
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aligned in any particular direction. The configuration space for the dynamical study of such
systems is thus the five-dimensional linear space V of traceless real symmetric 3 × 3 matrices.
In the absence of external influence (such as an electric or magnetic field or a fluid flow) the
governing equations are invariant under rigid rotations and reflections in R3 and hence under
the conjugacy action of the orthogonal group O(3) on V .

Equilibrium states of a bulk liquid crystal are taken to be critical points of a smooth
free-energy function

F : V → R

for which the O(3)-invariance is expressed by the fact (see e.g. [1]) that F(Q) is composed
of sums and products of the two basic functions tr(Q2) and tr(Q3) (or tr(Q2) and det(Q)

since tr(Q3) = 3 det(Q) when tr(Q) = 0). The simplest such model that gives realistic stable
equilibria (local minima of F ) is the Landau–de Gennes model [3]

F(Q) = 1
2τ tr(Q2) − 1

3B tr(Q3) + 1
4C(tr(Q2))2 (1.1)

in which B,C > 0 are constants of the material and τ represents deviation from a critical
temperature. Equilibria are fixed points of the flow generated by gradF on V , the gradient
being defined using the standard inner product 〈Q,R〉 = tr(QT R) = tr(QR) for Q,R ∈ V .

The governing equations in the presence of a shear flow have been derived [8, 13–15]
using this free-energy function enhanced with additional gradient energy terms to account
for elastic effects. We assume that the nematic liquid crystal is both isothermal and
incompressible. Standard procedures from nonequilibrium thermodynamics requiring positive
energy production and conservation of momentum and mass yield a rate equation for the order
tensor together with a momentum equation for a divergence-free velocity field.

In this paper we focus on a simple model where the shear flow is confined to the (x, y)-
plane. In particular we assume the velocity field is v(y, 0, 0), where v is the shear rate. In this
situation the momentum equation is automatically satisfied and the rate equation for the order
tensor may be expressed as

dQ

dt
= δP (Q) − gradF(Q) (1.2)

where δ is the dimensionless shear rate and where

P(Q) = [W,Q] + βD (1.3)

in which

W =
( 0 1 0

−1 0 0
0 0 0

)
D =

( 0 1 0
1 0 0
0 0 0

)
(1.4)

and β > 0 is a constant.
We study the system (1.2), first in the case when all configurations are constrained to

lie in the plane of the shear flow (the in-plane case) and then when arbitrary configurations
are allowed (out of plane). As we show, there are in fact no out-of-plane equilibria with the
exception of an anomalous continuum (ellipse) of equilibria that exists only for parameter
values (τ, δ) lying on a circle in R2, a phenomenon first discovered numerically [20]. We
conclude from this that the model is not structurally stable, and thus not fully adequate as a
representation of observable physical phenomena.
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2. The in-plane case without flow

This case has been well studied previously: see for example [4]. In the absence of flow we
have δ = 0 and (1.2) gives

dQ

dt
= −gradF(Q). (2.1)

We restrict our attention to configurations which are symmetric with respect to reflection in the
x-, y-plane, so that molecules are aligned either in that plane or in the direction of the z-axis.
Without loss of generality we may express Q in the form

Q =
(
η +

√
3µ

√
3ν 0√

3ν η − √
3µ 0

0 0 −2η

)
= ηE +

√
3ρR(α) (2.2)

with µ, ν, η ∈ R, where µ + iν = ρeiα and

E =
( 1 0 0

0 1 0
0 0 −2

)
R(α) =

( cosα sin α 0
sin α − cosα 0

0 0 0

)
. (2.3)

In these coordinates

tr(Q2) = 6(ρ2 + η2) (2.4)

tr(Q3) = 6η(3ρ2 − η2) = 6 Im (ρ + iη)3. (2.5)

Let U ∼= R3 denote the space of all 3 × 3 matrices of the form (2.2). The free-energy function
F restricted to U is clearly invariant with respect to the symmetries:

(i) rotation about the η-axis;
(ii) D3 in the (ρ, η)-plane

where D3 is the group of symmetries of an equilateral triangle, generated by rotation by 2π/3
and reflection in the η-axis. This immediately gives:

Proposition 2.1. The critical points of F restricted to U occur either as circles about the
η-axis or as points on the η-axis. The set of critical points meets any plane in U containing
the η-axis in a D3-symmetric configuration.

See figure 1 as a schematic indication of this geometry.
By first considering the restriction of F to the η-axis and then exploiting symmetry

it is straightforward to deduce the following description of equilibria for the system Q̇ =
−gradF(Q):

τ > τ0 > 0: Q = 0 stable

τ0 > τ > 0: Q = 0 stable
Q = Qi = ηiE, i = 1, 2, η1 < η2 < 0
Q = Q̃i(α) = − 1

2ηi(E + 3R(α)), 0 � α < 2π

i = 1: stable, i = 2: unstable

0 > τ : Q = 0 unstable
Q = Q1, Q̃1(α), η1 < 0 stable
Q = Q2, Q̃2(α), η2 > 0 unstable.

As τ decreases through τ0 = B2/24C there are simultaneous saddle-node creations of
pairs of equilibria at (ρ, η) = (0, η0) and (±ρ0,− 1

2η0) where ρ0 =
√

3
2 η0 and η0 = −2τ0/B;
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Figure 1. Sketch of symmetries of F on
U .

Figure 2. Bifurcation diagram for critical points of F on U . Bold
curves represent stable equilibria.

subsequently the innermost equilibria approach the origin and coalesce at a degenerate critical
point there as τ decreases to 0, emerging on the other side as τ becomes negative. See
figures 2, 3.

The physical interpretation is that in the absence of a velocity field for τ > τ0 the only
stable state is the isotropic (Q = 0) state, while for τ < τ0 there are further stable states with
molecules aligned in the z-direction or (for the same free energy) with molecules aligned in
some direction in the (x, y)-plane; all directions have equal likelihood. The isotropic state
loses stability when τ becomes negative.

3. Nonzero shear: the in-plane case

We now consider the dynamical system (1.2), (1.3) with W,D nonzero but still restricted to
the space U of in-plane configurations. The first step is an elementary but crucial observation.

Proposition 3.1. Since F is invariant under rotation about the η-axis, the (µ, ν) component
of gradF is radial. Hence equilibria for (1.2) can occur only where the (µ, ν) component of
P is radial.

Later we generalize this to the full out-of-plane context. Meanwhile, it is easily checked
that for the in-plane case the vector field P is given in (µ, ν, η)-coordinates by

P(µ, ν, η) =
(

2ν,−2µ +
1√
3
β, 0

)
(3.1)

for which the integral flow is rotation about the point ( 1
2
√

3
β, 0, η) in each plane η = constant.

Elementary geometry shows that this flow is radial in (µ, ν) at precisely those points where
(µ, ν) lies on the circle C with diameter the interval [0, 1

2
√

3
β] on the µ-axis: see figure 4.

If C̃ denotes the cylinder that is the product of C with the η-axis we then have:
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Figure 3. Phase portraits for Q̇ = −gradF(Q) (schematic).

µ

ν

d

C

Figure 4. Circle C where P is radial.

Proposition 3.2. All in-plane equilibria for (1.2), (1.3) lie on C̃.

The behaviour of equilibria as τ, δ are varied has been fully investigated by analytical
and numerical methods by Vicente Alonso [20]. Some of these results can be recovered
qualitatively by geometric arguments, which we do not pursue here.
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0 τ0
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0
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δ = 0

δ > 0

Tumbling
periodic orbits

Figure 5. Bifurcation diagram showing equilibria coalescing at a saddle-node to become a tumbling
orbit when δ > 0.

4. Some dynamics for the in-plane case

When δ = 0 the equilibria (critical points of F ) which are not on the η-axis occur in circles
about the η-axis, and for τ �= 0, τ0 these circles are normally hyperbolic: the eigenvalues of the
local linearization of gradF in the (ρ, η)-plane are nonzero. Since there is zero flow along the
circles themselves they are thus r-normally hyperbolic [9] for all r > 0. The invariant manifold
theorem [9] therefore implies that they persist as C∞ invariant manifolds for sufficiently small
C∞ perturbations of the flow. More specifically:

Proposition 4.1. Let τ �= 0, τ0 and let S be a circle of critical points of F restricted to U .
Then for sufficiently small δ > 0 (depending on τ ) there is a C∞ closed curve S ′ close to S

which is invariant under the flow of the non-gradient system (1.2).

Corollary 4.2. The only points of S ′ which can be equilibria are those of S ′∩C̃; for sufficiently
small δ > 0 there are at most two such points.

Since the radii of the circles S tend to +∞ as τ → −∞ and the cylinder C̃ is fixed it
follows that for sufficiently small δ > 0 the solution branches representing circles S for δ = 0
become pairs of branches of equilibria that mutually annihilate at a saddle-node for some
τ < 0. This can be clearly seen in the study of equilibrium paths in [20], from which figure 5
is taken as an illustration.

Corollary 4.3. Suppose τ is sufficiently large and negative so that S is disjoint from (i.e.
encircles) C̃. Then for sufficiently small δ > 0 the loop S ′ is a periodic orbit of (1.2).

Such periodic orbits necessarily encircle the η-axis and hence represent so-called tumbling
motion of the molecules [20]. Only those arising from S corresponding to Q̃1 (see section 2)
will be stable.

There is a useful extension to proposition 3.2. Any periodic orbit of (1.2) which cuts C̃

must do so in a radial direction as bothP and gradF are radial there. This is nicely illustrated by
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Figure 6. Wagging orbits created at a Hopf bifurcation becoming larger-amplitude tumbling orbits.

the family of periodic orbits created by a Hopf bifurcation at a point of C̃ as shown numerically
in figure 6. These orbits initially do not encircle the η-axis and represent wagging motion.

There are more complicated bifurcations that occur, including a Takens–Bogdanov
bifurcation. For further details see [20].

5. Out-of-plane equilibria

Finally we turn to out-of-plane equilibria, that is equilibrium states in which molecules are
oriented neither in nor orthogonal to the plane of the shear flow. Numerical evidence [20]
suggests that there exist in general no out-of-plane equilibrium states for the system (1.2). The
curious exception is that for sufficiently small δ > 0 there are apparently two values τ = τ1, τ2

(depending on δ) for which there exists a continuum of equilibria: see figure 7.
The aim in this section is to give the geometric explanation for this highly nongeneric

behaviour. On this basis we make some comments on the robustness of the dynamical
model (1.2).

We begin by formulating the analogue of proposition 3.1 for the full out-of-plane system.
For Q ∈ V consider the orbit %Q of Q under the action of the group % = O(3) on V . For

typical Q the orbit is a smooth 3-manifold, while for nonzero Q with two equal eigenvalues it
is a 2-manifold (projective plane). The tangent space to %Q at Q is the linear subspace TQ of
V given by

TQ = {[W̃ ,Q] : W̃ ∈ Skew}
where Skew denotes the set of 3 × 3 real skew-symmetric matrices (the Lie algebra of the
group O(3)). Since the free-energy function F is %-invariant it is constant on each %-orbit and
so gradF(Q) is orthogonal to TQ for every Q ∈ V . We can now generalize proposition 3.1.

Proposition 5.1. Equilibria for (1.2) on V can occur only where P(Q) is orthogonal to TQ.

This orthogonality can be neatly characterized.

Proposition 5.2. The matrix P = P(Q) is orthogonal to TQ if and only if P commutes with Q.
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τ2τ1
τ

p

t

p

E1
E2

E2

E1

Figure 7. The ellipses E1, E2 of out-of-plane equilibria. Here p, t are respectively a diagonal and
off-diagonal component of the matrix Q: see (5.1).

Proof. Since 〈P, [W̃ ,Q]〉 = 〈[Q,P ], W̃ 〉 we see that P is orthogonal to TQ precisely when
[Q,P ] is orthogonal to every W̃ ∈ Skew, that is [Q,P ] is symmetric. However, since Q,P

are symmetric the matrix [Q,P ] is in any case skew-symmetric and so symmetric if and only
if it is zero, that is QP = PQ. �

Defining the normality locus N ⊂ V by

N = {Q ∈ V : P(Q) commutes withQ}
we thus have:

Corollary 5.3. All equilibria for (1.2) in V lie on N .

Remark. An equilibrium state Q satisfies δP (Q) = gradF(Q), which automatically
commutes with Q, so proposition 5.2 follows immediately from this. However, we later
wish to exploit the geometry behind this algebraic conclusion.

The equations for N are easy to write down. Taking

Q =
(
p u t

u q s

t s r

)
p + q + r = 0 (5.1)

gives

[W,Q] =
( 2u q − p s

q − p −2u −t

s −t 0

)
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and the three equations requiring that the skew-symmetric matrix [P(Q),Q] be zero are

(q − p)2 + s2 + t2 + 4u2 = −β(q − p) (5.2)

3(ut − ps) = −βs (5.3)

3(qt − us) = −βt. (5.4)

Note that setting s = t = 0 leaves the single equation

(q − p)2 + β(q − p) + 4u2 = 0

which in (µ, ν, η)-coordinates is the cylinder C̃ from section 4.
Let Ñ denote N \ C̃, that is the out-of-plane part of N , corresponding to (s, t) �= (0, 0).

Proposition 5.4. The set Ñ lies on the sphere in V with centre the origin and radius
√

2
3β.

Proof. Rewrite the equations (5.2)–(5.4) as
1
2 |Q|2 + 3(u2 − pq) = β(p − q) (5.5)

ut = ps − 1
3βs (5.6)

us = qt + 1
3βt (5.7)

recalling that |Q|2 = tr(Q2). Multiplying (5.6) and (5.7) gives when st �= 0

u2 = (p − 1
3β)(q + 1

3β) (5.8)

and substitution into (5.5) gives 1
2 |Q|2 = 1

3β
2. If s = 0 and t �= 0 then u = 0, q = − 1

3β and
again (5.5) gives 1

2 |Q|2 = 1
3β

2; similarly if s �= 0, t = 0. �

Corollary 5.5. For fixed β and B,C the out-of-plane equilibrium states for (1.2) remain
bounded (and hence also the free energy remains bounded) regardless of the values of τ

and δ.

In fact, as we see below, such equilibria exist only for (τ, δ) in a bounded region of the
parameter space. This contrasts with in-plane equilibria which exist for arbitrarily large |τ |
and δ.

Now replacing |Q|2 by 2
3β

2 in the expression

gradF(Q) = τQ − B(Q2 − 1
3 |Q|2I ) + C|Q|2Q (5.9)

for the gradient of F on V we obtain the following simplification of the problem:

Corollary 5.6. The out-of-plane equilibria of (1.2) coincide with the zeros on Ñ of the vector
field

X̃(Q) = δP (Q) − Z(Q) (5.10)

where

Z(Q) = 2
9β

2BI + τ∗Q − BQ2 (5.11)

with τ∗ = τ + 2
3β

2C.

Let K denote the orthogonal complement of U in V ; thus K consists of the matrices of
the form

M(s, t) =
( 0 0 t

0 0 s

t s 0

)
(5.12)

for s, t ∈ R. We identify M(s, t) with (s, t) ∈ R2. If π : V → K ∼= R2 denotes orthogonal
projection then out-of-plane equilibria Q are precisely those with π(Q) �= (0, 0).

The following calculation is elementary, given tr(Q) = p + q + r = 0.
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Proposition 5.7. If Q ∈ N and π(Q) = (s, t) then π(Q2) = a(−s, t) where a = 1
3β; thus

π(Z(Q)) = ((τ∗ + aB)s, (τ∗ − aB)t). (5.13)

Corollary 5.8. For Q ∈ Ñ the projected vector field π(X̃(Q)) is linear and given by
π(X̃(Q)) = Hπ(Q) where H is the 2 × 2 matrix

H =
(−τ∗ − aB −δ

δ −τ∗ + aB

)
. (5.14)

Corollary 5.9. If X̃(Q) = 0 ∈ V with π(Q) �= (0, 0) ∈ K ∼= R2 then det H = 0 and
π(Q) ∈ kerH . Thus out-of-plane solutions to (1.2) exist only if

τ 2
∗ + δ2 = a2B2. (5.15)

Such solutions Q have π(Q) = (s, t) with s = kt where

k = δ−1(τ∗ + aB) = −δ(τ∗ − aB)−1 (5.16)

for δ �= 0. When δ = 0 the solutions have t = 0 or s = 0 for τ∗ = aB or τ∗ = −aB

respectively.

Putting these results together gives:

Theorem 5.10. For 0 < δ < aB there are two values τ1, τ2 of τ for which out-of-plane
equilibria can exist. Such equilibria lie on the ellipse Ei = Ñ ∩ Hi , i = 1, 2 where Hi is
the hyperplane s = kt of V with k as in (5.16) for τ∗ = τi + 2

3β
2C. For δ = aB there can

be out-of-plane equilibria only when τ = − 2
3β

2C, and for δ > aB there are no out-of-plane
equilibria.

The ellipses Ei , i = 1, 2 are those discovered numerically in [20], where they appear to
consist entirely of equilibria. We next show that this is indeed the case. We need a preliminary
algebraic fact. Let H = H1 ∪ H2.

Proposition 5.11. For every Q ∈ Ñ ∩ H we have TQ ∩ K = {0}.
The proof follows below. From proposition 5.11 we now obtain the result that all points

of E1, E2 are equilibria for (1.2).

Theorem 5.12. X̃(Q) = 0 for all Q ∈ Ñ ∩ H = E1 ∪ E2.

Proof. Since dim TQ = 3, dim K = 2 and TQ ∩K = {0} by proposition 5.11, we deduce that
V = span{TQ,K}. Now by definition for Q ∈ Ñ the vector X̃(Q) has zero TQ-component,
and for Q ∈ Ñ ∩ H the vector X̃(Q) has zero K-component and must therefore be the zero
vector. By corollary 5.6 we have that Q is an out-of-plane equilibrium. �

Proof of proposition 5.11. For w = (w1, w2, w3) ∈ R3 let S(w) denote the skew-symmetric
matrix ( 0 w3 −w2

−w3 0 w1

w2 −w1 0

)
. (5.17)

Then the projection of TQ into U is spanned by the projections of the three matrices [S(ei),Q]
where e1, e2, e3 are the standard basis vectors in R3, namely the matrices( 2u q − p 0
q − p −2u 0

0 0 0

) (−2t −s 0
−s 0 0
0 0 2t

) ( 0 t 0
t 2s 0
0 0 −2s

)
(5.18)
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respectively. These are linearly independent, so that TQ ∩ K = {0} as claimed, unless

det

( 2u −2u q − p

−2t 0 −s

0 2s t

)
= 4[u(s2 − t2) − (q − p)st] = 0. (5.19)

Using (5.5)–(5.7) this condition reduces to st = 0 when Q ∈ N , and hence to s = t = 0 when
Q ∈ H with k �= 0,∞. These exceptional cases are where δ = 0, τ∗ = ±aB, and here it is
straightforward to check directly that X̃(Q) = 0 for Q ∈ Ñ ∩ H. �

Remark. It is reasonable to conjecture that the ellipses E1, E2 are the remnants of an O(3)-
orbit of solutions to gradF(Q) = 0 surviving the addition of the symmetry-breaking term
P(Q). This turns out not to be the case, for although tr(Q) and tr(Q2) are constant on Ñ ∩ H
we find that for k �= 0,∞

det(Q) = 2a2(a cos 2ϕ + u sin 2ϕ)

where k = tan ϕ, and so the eigenvalues of Q are not constant on Ei .

6. Conclusion

We have given a rigorous geometric derivation of some of the numerical results on the
bifurcation of equilibria and periodic motions of a bulk nematic liquid crystal in a shear
flow reported in [20]. In particular we have explained anomalous continua of out-of-plane
equilibria for certain parameter values, and shown they are not simply artefacts of residual
symmetry in the problem. The creation of these continua can be avoided by arbitrarily small
perturbations in the equations of motion, and consequently these are not structurally stable.
This suggests that the fourth-order Landau–de Gennes free-energy function on the order tensor
is an unreliable model for a nematic liquid crystal in a flow environment.
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